\(\int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx\) [563]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 214 \[ \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {\left (\frac {1}{8}-\frac {i}{8}\right ) (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{a^{5/2} d}+\frac {A+i B}{5 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {13 A+3 i B}{30 a d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {67 A-3 i B}{60 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}} \]

[Out]

(1/8-1/8*I)*(A-I*B)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+
c)^(1/2)/a^(5/2)/d+1/60*(67*A-3*I*B)/a^2/d/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2)+1/5*(A+I*B)/d/cot(d*x+c)^
(1/2)/(a+I*a*tan(d*x+c))^(5/2)+1/30*(13*A+3*I*B)/a/d/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2)

Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {4326, 3677, 12, 3625, 211} \[ \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {\left (\frac {1}{8}-\frac {i}{8}\right ) (A-i B) \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac {67 A-3 i B}{60 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {A+i B}{5 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {13 A+3 i B}{30 a d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \]

[In]

Int[(Sqrt[Cot[c + d*x]]*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((1/8 - I/8)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d
*x]]*Sqrt[Tan[c + d*x]])/(a^(5/2)*d) + (A + I*B)/(5*d*Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(5/2)) + (13*A
 + (3*I)*B)/(30*a*d*Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)) + (67*A - (3*I)*B)/(60*a^2*d*Sqrt[Cot[c +
 d*x]]*Sqrt[a + I*a*Tan[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3677

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*A + b*B)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*
f*m*(b*c - a*d))), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 4326

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {A+B \tan (c+d x)}{\sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2}} \, dx \\ & = \frac {A+i B}{5 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\frac {1}{2} a (9 A-i B)-2 a (i A-B) \tan (c+d x)}{\sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx}{5 a^2} \\ & = \frac {A+i B}{5 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {13 A+3 i B}{30 a d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\frac {1}{4} a^2 (41 A-9 i B)-\frac {1}{2} a^2 (13 i A-3 B) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx}{15 a^4} \\ & = \frac {A+i B}{5 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {13 A+3 i B}{30 a d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {67 A-3 i B}{60 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {15 a^3 (A-i B) \sqrt {a+i a \tan (c+d x)}}{8 \sqrt {\tan (c+d x)}} \, dx}{15 a^6} \\ & = \frac {A+i B}{5 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {13 A+3 i B}{30 a d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {67 A-3 i B}{60 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left ((A-i B) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{8 a^3} \\ & = \frac {A+i B}{5 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {13 A+3 i B}{30 a d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {67 A-3 i B}{60 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {\left (i (A-i B) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 a d} \\ & = -\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{a^{5/2} d}+\frac {A+i B}{5 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {13 A+3 i B}{30 a d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {67 A-3 i B}{60 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 5.72 (sec) , antiderivative size = 221, normalized size of antiderivative = 1.03 \[ \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {\cot ^{\frac {3}{2}}(c+d x) \sec ^2(c+d x) (i a \tan (c+d x))^{3/2} \left (2 (19 A+9 i B+(86 A+6 i B) \cos (2 (c+d x))+80 i A \sin (2 (c+d x))) \sqrt {i a \tan (c+d x)}+15 \sqrt {2} (A-i B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) (\cos (2 (c+d x))+i \sin (2 (c+d x))) \sqrt {a+i a \tan (c+d x)}\right )}{120 a^4 d (-i+\tan (c+d x))^2 \sqrt {a+i a \tan (c+d x)}} \]

[In]

Integrate[(Sqrt[Cot[c + d*x]]*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(Cot[c + d*x]^(3/2)*Sec[c + d*x]^2*(I*a*Tan[c + d*x])^(3/2)*(2*(19*A + (9*I)*B + (86*A + (6*I)*B)*Cos[2*(c + d
*x)] + (80*I)*A*Sin[2*(c + d*x)])*Sqrt[I*a*Tan[c + d*x]] + 15*Sqrt[2]*(A - I*B)*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[
c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*(Cos[2*(c + d*x)] + I*Sin[2*(c + d*x)])*Sqrt[a + I*a*Tan[c + d*x]]))/(1
20*a^4*d*(-I + Tan[c + d*x])^2*Sqrt[a + I*a*Tan[c + d*x]])

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1093 vs. \(2 (172 ) = 344\).

Time = 0.58 (sec) , antiderivative size = 1094, normalized size of antiderivative = 5.11

method result size
derivativedivides \(\text {Expression too large to display}\) \(1094\)
default \(\text {Expression too large to display}\) \(1094\)

[In]

int(cot(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/240/d*(1/tan(d*x+c))^(1/2)*tan(d*x+c)*(a*(1+I*tan(d*x+c)))^(1/2)/a^3*(15*I*A*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(
1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3*a*tan(d*x+c)-I*a)/(tan(d*x+c)+I))*a-90*I*A*2^(1/2)*ln((2*2^(1/2)*
(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3*a*tan(d*x+c)-I*a)/(tan(d*x+c)+I))*a*tan(d*x+c)^2+15*B*2^(
1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3*a*tan(d*x+c)-I*a)/(tan(d*x+c)+I))*a*ta
n(d*x+c)^4+12*B*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^3+60*I*B*2^(1/2)*ln((2*2^(1/2)*(
-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3*a*tan(d*x+c)-I*a)/(tan(d*x+c)+I))*a*tan(d*x+c)+60*A*2^(1/2
)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3*a*tan(d*x+c)-I*a)/(tan(d*x+c)+I))*a*tan(d
*x+c)^3+908*A*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2+268*I*A*(a*tan(d*x+c)*(1+I*tan(d
*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^3-60*I*B*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c
)))^(1/2)+3*a*tan(d*x+c)-I*a)/(tan(d*x+c)+I))*a*tan(d*x+c)^3-90*B*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*
x+c)*(1+I*tan(d*x+c)))^(1/2)+3*a*tan(d*x+c)-I*a)/(tan(d*x+c)+I))*a*tan(d*x+c)^2-12*I*B*(a*tan(d*x+c)*(1+I*tan(
d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2-60*I*B*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)-60*A*ln((2*
2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3*a*tan(d*x+c)-I*a)/(tan(d*x+c)+I))*2^(1/2)*a*tan(d
*x+c)-1060*I*A*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)+15*B*2^(1/2)*ln((2*2^(1/2)*(-I*a)
^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3*a*tan(d*x+c)-I*a)/(tan(d*x+c)+I))*a+15*I*A*2^(1/2)*ln((2*2^(1/2
)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3*a*tan(d*x+c)-I*a)/(tan(d*x+c)+I))*a*tan(d*x+c)^4+60*B*t
an(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)-420*A*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a
)^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-tan(d*x+c)+I)^4/(-I*a)^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 481 vs. \(2 (162) = 324\).

Time = 0.26 (sec) , antiderivative size = 481, normalized size of antiderivative = 2.25 \[ \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {{\left (15 \, \sqrt {\frac {1}{2}} a^{3} d \sqrt {\frac {-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (-\frac {4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} - a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{5} d^{2}}} + {\left (A - i \, B\right )} a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - 15 \, \sqrt {\frac {1}{2}} a^{3} d \sqrt {\frac {-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (\frac {4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} - a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{5} d^{2}}} - {\left (A - i \, B\right )} a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) + \sqrt {2} {\left ({\left (-83 i \, A + 3 \, B\right )} e^{\left (6 i \, d x + 6 i \, c\right )} - 2 \, {\left (-32 i \, A - 3 \, B\right )} e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, {\left (-8 i \, A + 3 \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + 3 i \, A - 3 \, B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-5 i \, d x - 5 i \, c\right )}}{120 \, a^{3} d} \]

[In]

integrate(cot(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/120*(15*sqrt(1/2)*a^3*d*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(-4*(sqrt(2)*sqrt(1/
2)*(a^3*d*e^(2*I*d*x + 2*I*c) - a^3*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(
2*I*d*x + 2*I*c) - 1))*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^5*d^2)) + (A - I*B)*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c
)/(I*A + B)) - 15*sqrt(1/2)*a^3*d*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(4*(sqrt(2)*
sqrt(1/2)*(a^3*d*e^(2*I*d*x + 2*I*c) - a^3*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) +
I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^5*d^2)) - (A - I*B)*a*e^(I*d*x + I*c))*e^(-I*d*
x - I*c)/(I*A + B)) + sqrt(2)*((-83*I*A + 3*B)*e^(6*I*d*x + 6*I*c) - 2*(-32*I*A - 3*B)*e^(4*I*d*x + 4*I*c) - 2
*(-8*I*A + 3*B)*e^(2*I*d*x + 2*I*c) + 3*I*A - 3*B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*
c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-5*I*d*x - 5*I*c)/(a^3*d)

Sympy [F]

\[ \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \sqrt {\cot {\left (c + d x \right )}}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(cot(d*x+c)**(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Integral((A + B*tan(c + d*x))*sqrt(cot(c + d*x))/(I*a*(tan(c + d*x) - I))**(5/2), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate(cot(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

Giac [F]

\[ \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {\cot \left (d x + c\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cot(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(cot(d*x + c))/(I*a*tan(d*x + c) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\mathrm {cot}\left (c+d\,x\right )}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}} \,d x \]

[In]

int((cot(c + d*x)^(1/2)*(A + B*tan(c + d*x)))/(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

int((cot(c + d*x)^(1/2)*(A + B*tan(c + d*x)))/(a + a*tan(c + d*x)*1i)^(5/2), x)